OBJECTIVE: write radicals in exact simplest form and make an approximation of the value mentally and using technology. classify radicals as rational or irrational. combine radical expressions using addition, subtraction, and multiplication.

Rational and Irrational Radical Expressions			
Rational- Radicals are rational when all of the factors can be removed from the radicand index as the exchange rate. The square root of perfect squares (like the square the cube root of perfect cubes (like the cube root of 8) are good examples of this.			
Irrational- Radicals are irrational when some factors remain in the radicand after simplification. An example of this is the square root of 18 (a set of threes can be exchanged, but a 2 remains). Another name for an irrational radical of this type is "surd". These radicals have an exact form (same as simplified form), but they can also be approximated on your calculator. Just remember that the digits that appear on your calculator will go on forever and when you round you change from an exact answer to an estimated answer.			
Practice			
Radical Expression	Exact Simplified Value	Estimated Value	Rational or Irrational
$\sqrt[2]{100}$	$=10$	$N A$	R
$\sqrt[3]{54}$	$=3 \sqrt[3]{2}$	≈ 3.78	I
$3 \sqrt[2]{200}$	$=30 \sqrt[2]{2}$	≈ 42.43	I
$5 \sqrt[2]{49}$	$=35$	$N A$	R
$\sqrt[3]{32}$	$=2 \sqrt[3]{4}$	≈ 3.17	I
$\sqrt[2]{1000}$	$=10 \sqrt[2]{10}$	≈ 31.62	I

Adding \& Subtracting Radicals

Like

In algebra like terms are terms that contain the same variables raised to the same powers. Like terms can be combined into a single term using addition and subtraction. In this case the coefficients reflect the change but the variable and its power stay the same.

Simplify the following expressions by adding like terms:

$$
\begin{aligned}
& 2 x+3 x= \\
& 5 x^{2}-2 x^{2}=5 x^{2}-2 x^{2}=3 x^{2} \text {, notice again that the power of the variable does not change. } \\
& 2 x+4 y=2 x+4 y \text {, these are not like terms because the variables are not the same. } \\
& 2 x+4 y=\quad 2 x+3 x^{2}=2 x+3 x^{2} \text {, these are not like terms because the power of the variable is not } \\
& 2 x+3 x^{2}=\quad \begin{array}{l}
\text { the same. } \\
4 y+y=5 y, \text { remember that a single } y \text { has a coefficient of } 1 .
\end{array} \\
& 4 y+y=
\end{aligned}
$$

Like

When dealing with radicals, like radical expressions are expressions that have the same radicands and indices (plural for index). These expressions can be combined into a single expression when using addition or subtraction. In such a case the numbers outside the radical reflect the change but the radicand and index stay the same.

Identify and combine the like terms in the following expression:

$$
\begin{gathered}
4 \sqrt[3]{3}+2+\sqrt[3]{8}-4 \sqrt[2]{3}+\sqrt[3]{4}-1+2 \sqrt[2]{11}-\sqrt[3]{3}-21 \sqrt[2]{3}+4 \sqrt[2]{11} \\
=3 \sqrt[3]{3}+1+\sqrt[3]{8}-25 \sqrt[2]{3}+\sqrt[3]{4}+6 \sqrt[2]{11}
\end{gathered}
$$

$\begin{aligned} & 4 \sqrt[3]{5}+2 \sqrt[3]{5}-\sqrt{5}= \\ & =6 \sqrt[3]{5}-\sqrt{5} \end{aligned}$	$\begin{aligned} & 7 \sqrt{8}+\sqrt{2}+2 \sqrt{18}= \\ & =7 \sqrt{8}+\sqrt{2}+6 \sqrt{2} \\ & =7 \sqrt{8}+7 \sqrt{2} \end{aligned}$	$\begin{aligned} & \sqrt{147}+2 \sqrt{192}-4 \sqrt{3}+\sqrt{75}= \\ & =7 \sqrt[3]{3}+16 \sqrt[3]{3}-4 \sqrt[3]{3}+5 \sqrt[3]{3} \\ & =23 \sqrt[3]{3} \end{aligned}$

Rules for Adding \& Subtracting Radicals

- simplify all radicals first.
- Remember that like expressions must have the same radicands and indices.
- The radicand and index should NOT change in the addition or subtraction process.

The product of two radical expressions of the form $a \sqrt[b]{c} \& d \sqrt[b]{e} \quad$ is $\quad a \cdot d \sqrt[b]{c \cdot e}$.

In My Own Words

To multiply two radical expressions they must share the same index. We will multiply the numbers outside of the radical symbol together and multiply the numbers inside the radicand together.

Radical Expression	Practice	Estimated Value	Rational Irrational
$3 \sqrt[3]{2} \cdot 5 \sqrt[3]{4}=$	$=15 \sqrt[3]{8}$	$N A$	R
$=15 \cdot 2$			
$-2 \sqrt{22} \cdot 6 \sqrt{4}=$	$=-12 \sqrt{88}$	≈ 112.57	I
$=-24 \sqrt{22}$			
$2 \sqrt{6} \cdot 3 \sqrt{12}=$	$=6 \sqrt{72}$	≈ 50.91	I
	$=6 \cdot 6 \sqrt{2}$		

