OBJECTIVE: Write radicals in exact simplest form and make an approximation of the value mentally and using technology. Classify radicals as rational or irrational. Combine radical expressions using addition, subtraction, and multiplication.

Subtraction, and multiplication. What is a Radical									
R	Index adicand	$-\frac{2}{16}$	= 4	Radicand Symbol					
	Challenge								
$\sqrt[2]{16} = 4$ $\sqrt[3]{8} = 2$ $\sqrt[4]{81} = 3$ $\sqrt[2]{25} = 5$ $\sqrt[6]{1} = 1$ $\sqrt[3]{64} = 4$ $\sqrt[2]{0} = 0$	The list to words, de examples There a tha radican way to rate (Li is 3 the possib exchan- removed	actions: the left includes seven examples escribe the relationship betwee . Be sure that that the descript are two ways to describe the relating the two ways to describe the two	een the index, the radicand, a bion is true for every case. ionship that we see here. Perhaps raise it to the power of the index ore complex. We will start with dicand completely. Then we us emove factors from the radican e use the index in this way to ex cand a group at a time. If the in up of size one as it is removed. For example, consider a radican	nd the value in the given s the easiest thing to say is then we will receive the the radicand and work our e the index as an exchange d. For example, if the index schange as many factors as ndex were 3 then we would Then we multiply all of the d with a radical 25 and an ate is 2 to 1 in this case, we					
RADICALS T	TO KNOW Simplifying Radicals								
$\sqrt[3]{4} = 2 \qquad \sqrt[3]{4}$	$\sqrt{0} = 0$ $\sqrt{1} = 1$ $\sqrt{8} = 2$	 -Factor the radicand. -Use the exchange rate to remove as many factors as possible from the radicand. Leave any factors that cannot be exchanged. -Multiply the factors back together, keeping separate those that have been removed. 							
$\sqrt[2]{16} = 4 \qquad \sqrt[3]{16}$ $\sqrt[2]{25} = 5 \qquad \sqrt[3]{16}$	$\sqrt{27} = 3$ $\sqrt{64} = 4$ $\sqrt{125} = 5$	∛16	₹√360	∜625					
$\sqrt[2]{49} = 7$ $\sqrt[3]{}$	$\sqrt{216} = 6$ $\sqrt{1000} = 10$	$=2\sqrt[3]{2}$	$=6\sqrt[2]{10}$	= 5					

	Rational and Irrational Radical Expressions						
Rational- Radicals are rational when all of the factors can be removed from the radicand using the index as the exchange rate. The square root of perfect squares (like the square root of 16) and the cube root of perfect cubes (like the cube root of 8) are good examples of this.							
Irrational- Radicals are irrational when some factors remain in the radicand after simplification. An example of this is the square root of 18 (a set of threes can be exchanged, but a 2 remains). Another name for an irrational radical of this type is "surd". These radicals have an exact form (same as simplified form), but they can also be approximated on your calculator. Just remember that the digits that appear on your calculator will go on forever and when you round you change from an exact answer to an estimated answer.							
	Practice		I				
Radical Expressio	Exact Simplified Value	Estimated Value	Rational or Irrational				
∛100	=10	NA	R				
∛54	$=3\sqrt[3]{2}$	≈ 3.78	Ι				
3∛200	$\overline{0} = 30\sqrt[2]{2}$	≈ 42.43	Ι				
5∛49	= 35	NA	R				
∛32	$=2\sqrt[3]{4}$	≈ 3.17	Ι				
₹√1000	$\overline{0} = 10\sqrt[2]{10}$	≈ 31.62	Ι				

Like terms can be consistent: conset the coefficient: lowing expressions 2x+3x=5x, w	combined into a single term usi s reflect the change but the varia by adding like terms:	me variables raised to the same powers. .ng addition and subtraction. In this able and its power stay the same.			
case the coefficient: lowing expressions $2x+3x=5x, \nu$	s reflect the change but the varia	•			
owing expressions 2x+3x=5x, y	by adding like terms:				
2x+3x=5x, v					
2x+3x=5x, v	notice that the nower of the varia				
- 2 - 2	VULVUG UNING UNG PUWER UT UNE VARIA	ble does not change.			
$\chi^2 = 5x^2 - 2x^2 = 3x^2$, notice that the power of the variable does not change. $\chi^2 = 5x^2 - 2x^2 = 3x^2$, notice again that the power of the variable does not change.					
2x+4y=2x+4y, these are not like terms because the variables are not the same.					
	+3x ² , these are not like terms be	ccause the power of the variable is not			
	emember that a single y has a c	coefficient of 1.			
0 0 0'	5 0				
		$-\sqrt[3]{3} - 21\sqrt[2]{3} + 4\sqrt[2]{11}$			
$=3^{3}_{1}$	$\sqrt{3} + 1 + \sqrt[3]{8} - 25\sqrt[3]{3} + \sqrt[3]{8}$	$\sqrt{4} + 6\sqrt[2]{11}$			
$\sqrt{5} =$	$7\sqrt{8} + \sqrt{2} + 2\sqrt{18} =$	$\sqrt{147} + 2\sqrt{192} - 4\sqrt{3} + \sqrt{75} =$			
		$=7\sqrt[3]{3}+16\sqrt[3]{3}-4\sqrt[3]{3}+5\sqrt[3]{3}$			
		$=23\sqrt[3]{3}$			
	$=7\sqrt{8}+7\sqrt{2}$	$= 23\sqrt[3]{3}$			
	the same. 4y+y=5y, r when dealing wir radicands and in single expression outside the radical mbine the like term $3\sqrt{3} + 2 + \sqrt[3]{8} - 1$	= $4y+y=5y$, remember that a single y has a d when dealing with radicals, like radical express radicands and indices (plural for index). These single expression when using addition or subtra outside the radical reflect the change but the radi mbine the like terms in the following expression: $\sqrt[3]{3}+2+\sqrt[3]{8}-4\sqrt[2]{3}+\sqrt[3]{4}-1+2\sqrt[2]{11}}$ $= 3\sqrt[3]{3}+1+\sqrt[3]{8}-25\sqrt[2]{3}+\sqrt[3]{4}$			

Multiplication Property for Radicals

The product of two radical expressions of the form $a\sqrt[b]{c}$ & $d\sqrt[b]{e}$ is $a \cdot d\sqrt[b]{c \cdot e}$.

In My Own Words

To multiply two radical expressions they must share the same index. We will multiply the numbers outside of the radical symbol together and multiply the numbers inside the radicand together.

Practice							
Radical Expression Exact Simplified Value		Estimated Value	Rational				
			or Irrational				
$3\sqrt[3]{2} \cdot 5\sqrt[3]{4} =$	$=15\sqrt[3]{8}$	NA	R				
	$= 15 \cdot 2$						
	= 30						
$-2\sqrt{22} \cdot 6\sqrt{4} =$	$=-12\sqrt{88}$	≈112.57	Ι				
	$= -24\sqrt{22}$						
$2\sqrt{6} \cdot 3\sqrt{12} =$	$=6\sqrt{72}$	≈ 50.91	Ι				
	$= 6 \cdot 6\sqrt{2}$						
	$=36\sqrt{2}$						